Comportement dynamique des ions d'impureté d'étain et phénomènes magnétiques associés à la transformation structurale dans V₂O₃ etudiés par spectrométrie Mössbauer de ¹¹⁹Sn¹

P. B. FABRITCHNYI, L. FOURNES,* G. DEMAZEAU,* M. I. AFANASOV, et I. A. PRESNIAKOV

Chaire de Radiochimie, Faculté de Chimie, Université Lomonosov, 119889 Moscou V-234, U.R.S.S.; et *Laboratoire de Chimie du Solide du CNRS, Université Bordeaux I, 351 cours de la Libération, 33405 Talence Cedex, France

Received May 15, 1991

¹¹⁹Sn Mössbauer spectra of tin impurity ions located both on the surface (Sn^{2+}) and in the bulk (Sn^{4+}) of V_2O_3 particles have been investigated over the temperature range $4.2 \le T \le 300$ K. The dynamical behavior of Sn^{2+} ions is found to be similar to that of divalent tin in SnO lattice and practically not influenced by the monoclinic to rhombohedral phase transition occuring in V_2O_3 at $T_t \approx 160$ K. This transition has been clearly observed, however, for Sn^{2+} ions via abrupt disappearance of magnetic hyperfine interactions within the same temperature range $(155 < T_1 \le 170$ K) as for bulk located Sn^{4+} ions. It is shown that the recoil-free fraction f for Sn^{4+} exhibits an anomalously strong temperature dependence in the monoclinic phase but remains nearly constant in the rhombohedral one. The variation of magnetic hyperfine field at ¹¹⁹Sn⁴⁺ in the low-temperature phase is found to be consistent with the fictitious Néel temperature $T_N = 200$ K previously determined from Mössbauer spectra of 5^7 Fe³⁺. The value of T_N detected by two quite different probe ions (Fe³⁺ and Sn⁴⁺) being nearly the same, this value may be considered as an intrinsic characteristic of the monoclinic V_2O_3 phase. The charge compensation mechanism in this oxide seems to be particular for each valence state of tin impurity atoms. © 1992 Academic Press, Inc.

I. Introduction

Les spectres Mössbauer des atomes d'étain (¹¹⁹Sn) introduits au sein des oxydes Cr_2O_3 et V_2O_3 ont permis de montrer que le recuit des hydroxydes précurseurs, dopés avec Sn⁴⁺, effectué sous hydrogène conduisait à la réduction des ions Sn⁴⁺ en Sn²⁺, ces derniers étant localisés à la surface des particules de l'oxyde formé (1, 2).

L'aspect dynamique du comportement des atomes d'étain dans ces oxydes n'étant pas auparavant étudié, il nous a paru intéressant de préciser dans quelle mesure l'état superficiel de ces atomes est susceptible d'affecter leurs vibrations thermiques.

Pour la présente étude, nous avons choisi un échantillon de V_2O_3 avec les ions Sn^{2+} à la surface et ceux Sn^{4+} dans le volume des particules de cet oxyde, les spectres Mössbauer de ¹¹⁹Sn permettant de distinguer faci

¹ Ce travail est dédié au Professeur Paul Hagenmuller à l'occasion de son soixante-dixième anniversaire en remerciement de ses efforts pour accroître la coopération scientifique franco-soviétique.

lement ces deux types d'étain. Cette même caractérisation était également susceptible d'apporter des renseignements supplémentaires concernant aussi bien le mécanisme de compensation de charges associé au dopage de V_2O_3 avec de l'étain que l'influence éventuelle de l'élément dopant sur la transformation de la structure rhomboédrique de V_2O_3 en celle monoclinique à $T_t = 155$ K (3, 4).

II. Partie expérimentale

Les échantillons de V₂O₃ dopés avec Sn (0,5% at. d'étain enrichi à 90% en ¹¹⁹Sn) ont été préparés par coprécipitation des hydroxydes de vanadium et d'étain à partir d'une solution chlorhydrique de V^{3+} et Sn⁴⁺. Après lavage avec une solution concentrée d'ammoniaque, le précipité a été traité pendant 3 h à 850°C sous courant d'hydrogène. L'analyse radiocristallographique à 295 K du produit résultant a révélé l'existence d'une seule phase correspondant à V₂O₃ rhomboédrique. Afin d'éviter toute oxydation à l'air de la surface de l'échantillon destiné à l'étude par spectrométrie Mössbauer, le traitement thermique sous courant d'hydrogène a été effectué au sein d'un réacteur original comportant une cellule de mesure "in situ" à parois minces de quartz. Le traitement thermique achevé, la cellule a été isolée du réacteur, tout en maintenant l'atmosphère réductrice, et installée dans un cryostat permettant d'effectuer les mesures à diverses températures entre 4, 2 et 300 K.

Les spectres ont été enregistrés à l'aide d'un spectromètre à accélération constante de type Halder avec une source constituée par Ca^{119m}SnO₃ à 293 K et ensuite analysés par ordinateur. Tous les déplacements isomériques sont relatifs à CaSnO₃ à 293 K.

III. Résultats et discussion

Les spectres mesurés à température croissante à partir de 4, 2 K (Fig. 1) confir-

ment les résultats récemment obtenus: ils mettent en évidence le transfert de champs magnétiques hyperfins au niveau des ions Sn^{4+} et Sn^{2+} à basse température (2). Ce transfert, traduisant l'ordre antiferromagnétique au sein de la phase monoclinique (5) et se manifestant sous forme d'une perturbation magnétique des spectres de ¹¹⁹Sn, n'est plus observable dans la phase rhomboédrique magnétiquement non ordonnée. La température de transition évaluée à partir des spectres de ¹¹⁹Sn⁴⁺ se situe entre 155 et 170 K. Ce résultat est en très bon accord avec la température de transition déterminée à partir d'une étude radiocristallographique pour V₂O₃ non dopé (155 \pm 5 K) (3, 4). Il peut en être déduit que la transformation structurale dans l'échantillon étudié n'est donc pas perturbée par les ions étain utilisés en tant que sondes Mössbauer.

Les vibrations thermiques des ions étain peuvent être caractérisées par les valeurs du facteur Lamb-Mössbauer f, représentant la fraction de transitions γ sans recul pour les ions Sn^{2+} ($f_{\text{Sn}^{2+}}$) ou Sn^{4+} ($f_{\text{Sn}^{4+}}$),

$$f = \exp\left[-\frac{4\pi^2 \langle u^2 \rangle}{\lambda^2}\right], \qquad (1)$$

où λ est la longueur d'onde du rayonnement Mössbauer et $\langle u^2 \rangle$ la moyenne sur les carrés d'amplitudes vibrationnelles de l'atome résonnant dans la direction de propagation du rayonnement γ .

Dans l'approximation de haute température, les valeurs de f peuvent être calculées à partir des relations (6)

- - 2

$$\frac{d\operatorname{Ln} f}{dT} = \frac{d\operatorname{Ln} A}{dT} = -\frac{3\mathrm{E}_0^2}{k_{\rm B}Mc^2\theta_{\rm M}^2}$$
$$= -\frac{3E_0^2}{k_{\rm B}M_{\rm eff}c^2\theta_{\rm M}^{\prime 2}}, \quad (2)$$

où A est l'aire normalisée de la composante du spectre correspondant aux ions Sn^{4+} ou Sn^{2+} , E_0 l'énergie de transition Mössbauer (23,8 keV), k_B la constante de Boltzmann, c

FIG. 1. Spectres Mössbauer de l'échantillon V_2O_3 : 0,5% at. Sn mesurés aux températures croissant de 4,2 à 300 K.

la vitesse de la lumière dans le vide, M la masse atomique de ¹¹⁹Sn, θ_M la température de réseau, θ'_M la température de réseau associée à la masse effective vibrante de l'étain (M_{eff}) définie à partir de la variation thermique du déplacement isomérique δ ,

$$M_{\rm eff} = -\frac{3E_0k_{\rm B}}{2c^2(d\delta/dT)}.$$
 (3)

Les spectres de ¹¹⁹Sn correspondant à la phase rhomboédrique de V_2O_3 ($T > T_t$) sont suffisamment bien résolus. Ils ne comportent qu'un singlet central de Sn⁴⁺ et qu'un doublet quadrupolaire de Sn²⁺ dans le domaine de vitesses positives et permettent de calculer facilement les paramètres Mössbauer caractéristiques des deux ions étain.

Les valeurs calculées de Ln A(T) /Ln A(170 K) relatives aux températures de mesure différentes sont présentées sur la figure 2, Ln A à 170 K étant choisi comme constante de normalisation. La variation linéaire de Ln A en fonction de la température observée pour les ions Sn^{2+} confirme la validité de l'approximation de haute température dans le cas considéré et permet donc de déterminer la valeur de θ_M ($\theta_M = 210 \pm 10$ K) relative à l'étain divalent. En revanche, pour les ions Sn^{4+} les valeurs de A dans cet intervalle de température restent sensiblement constantes et ne permettent donc pas de calculer le paramètre θ_M . L'absence de changement notable de $A_{\operatorname{Sn}^{4+}}$ souligne toutefois le comportement dynamique très différent des ions Sn^{2+} et Sn^{4+} dans le cas de la phase rhomboédrique.

Le dépendance thermique de δ est également différente pour les deux ions étain. Dans le cas de Sn²⁺ le déplacement isomérique croît de 2,77 ± 0,02 mm/s à 300 K jusqu'à 2,86 ± 0,02 mm/s à 170 K, le nombre limité de points expérimentaux ne permettent toutefois pas d'évaluer d'une façon fiable la masse effective vibrante et, par conséquent, θ'_{M} . En ce qui concerne les ions Sn⁴⁺ les valeurs de δ ne semblent pas subir aucun changement significatif dans ce domaine de température ($\delta_{sn^{4+}} = 0.26 \pm 0.02 \text{ mm/s}$).

L'éclatement quadrupolaire pour Sn^{2+} et la largeur à mi-hauteur du singlet de Sn^{4+} restent constants entre 170 et 300 K: $\Delta =$ 1,96 ± 0,05 mm/s et $\Gamma = 0,92 \pm 0,05$ mm/s, respectivement.

Pour la phase monoclinique $(T < T_i)$ la déconvolution des spectres s'avère plus compliquée. Les difficultés sont surtout dues à la présence du doublet asymétriquement élargi de Sn²⁺ qui traduit la concomitance des interactions hyperfines magnétique et quadrupolaire, celle quadrupolaire restant cependant prépondérante. Etant donné la présence simultanée de la composante Zeeman mal résolue associée aux ions Sn⁴⁺, les spectres observés sont trop complexes pour permettre un traitement numérique basé sur l'utilisation de l'hamiltonien complet d'interactions hyperfines. Toutefois, les valeurs de $A_{Sn^{4+}}$ et $A_{Sn^{2+}}$, considérées proportionnelles à celles de $f_{Sn^{4+}}$ et $f_{Sn^{2+}}$, dans le cas de l'échantillon étudié contenant moins de 0,2 mg¹¹⁹Sn/cm², peuvent être évaluées sans traitement direct de la composante de Sn²⁺. En effet, l'absorption dans le domaine de vitesses négatives associée aux ions Sn⁴⁺ n'étant pas sensiblement perturbée par celle due aux ions Sn^{2+} , l'analyse de cette partie du spectre permet de reconstituer d'une façon suffisamment précise le sextuplet hyperfin complet des ions Sn⁴⁺. Ensuite par soustraction de la valeur trouvée de $A_{Sn^{4+}}$ de l'aire totale du spectre expérimental on obtient alors $A_{Sn^{2+}}$.

L'évolution de Ln[A(T)/A(170 K)] en fonction de la température relative aux deux sondes Mössbauer dans le cas de la phase monoclinique est montrée sur la figure 2.

On peut constater que le comportement dynamique des ions Sn^{2+} au-dessous de T_t reste analogue à celui observé au-dessus de la température de transition: la dépendance thermique de Ln[A(T)/A(170 K)] est linéaire

FIG. 2. Dépendence thermique de Ln[A(T)/A(170 K)] pour les ions Sn²⁺ (\bullet) et Sn⁴⁺ (\blacktriangle).

avec un coefficient de proportionnalité conduisant à la valeur de $\theta_{\rm M} = 190 \pm 10$ K qui n'est que légèrement inférieure à celle déterminée à $T > T_{\rm t}$.

Etant donné une certaine incertitude due au changement de la méthode de dépouillement des spectres correspondant à la phase monoclinique, les valeurs de $f_{Sn^{2+}}$, figurant au tableau I, ont été calculées à partir de l'équation (2) en utilisant la valeur moyenne de $\theta_M = 200$ K. Celle-ci permet de décrire correctement, dans tout le domaine de température étudié, le comportement des ions Sn^{2+} dont les amplitudes de vibrations ne semblent pas être sensiblement influencées par la transformation structurale dans le coeur des particules de V₂O₃

D'après (1, 2) le polyèdre de coordination des ions Sn²⁺ à la surface de V₂O₃ est similaire à celui des ions étain au sein de SnO orthorhombique (pyramide triangulaire [SnO₃]) (7). Toutefois, faute de valeurs connues de f ou de θ_M pour cette dernière phase, elle ne peut pas servir d'étalon. En revanche, pour SnO de structure quadratique, comportant les groupements pyramidaux [SnO₄],

TABLEAU I

Dépendance thermique du facteur Lamb-Mössbauer de Sn^{2+} et Sn^{4+} pour V₂O₃

Т,К	$f_{\mathrm{Sn}^{2+}}$	$f_{\mathrm{Sn}^{4+}}$
300	0,26	0,52
270	0,30	0,52
235	0,35	0,52
210	0,39	0,53
170	0,47	0,53
(↑)	phase	,
	rhomboédrique	
155	0,50	0,58
140	0,54	0,61
120	0,59	0,65
77	0,71	0.76
60	0,77	0.81
4,2	0,98	0,98
(1)	phase	- ,,
· · ·	monoclinique	

les valeurs de $\theta_{\rm M}$ ont été déterminées au cours de deux études $\theta_{\rm M} = 203$ K selon (8) et 229 K selon (6). On peut constater que ces valeurs sont en bon accord avec celle calculée pour les ions superficiels dans le cas de V₂O₃. Par ailleurs, la dissymétrie du doublet quadrupolaire relatif à Sn²⁺—le rapport entre les aires de deux pics de ce doublet est au maximum égal à 1,2 (Fig. 1)—montre que l'anisotropie de vibration de ces ions superficiels ne diffère pas non plus d'une façon significative de celle caractérisant Sn²⁺ dans le volume de SnO quadratique (6).

Ainsi, le comportement dynamique des ions Sn^{2+} mis en évidence dans le cas de V_2O_3 semble résulter plutôt de la configuration électronique particulière de Sn^{2+} comportant un doublet non engagé que d'une participation de ces ions à un mode vibrationnel spécifique à la surface.

Si pour Sn^{2+} la variation de $\operatorname{Ln}[A(T)/A(170 \text{ K})]$ n'est pas notablement affectée par la transformation structurale, en revanche les résultats obtenus pour Sn^{4+} (Fig. 2) révèlent un changement drastique de la dépendance thermique de $f_{\operatorname{Sn}^{4+}}$ dans la phase monoclin-

ique. En effet, la diminution observée de Ln[A(T)/A(170 K)] en fonction de la température s'avère presque aussi forte que celle pour les ions Sn²⁺ et correspond à $\theta_{\rm M} = 225 \pm 15$ K bien que l'aire de la composante de Sn⁴⁺ soit pratiquement constante pour sensiblement la même plage de température à $T > T_t$. Un tel comportement de f n'a jamais, à notre connaissance, été observé pour les ions Sn⁴⁺ au sein d'un oxyde cristallisé. En revanche, l'absence de changements notables de $f_{Sn^{4+}}$ au-dessus de T_t est en bon accord avec la valeur de $\theta_{\rm M} = 350$ K (9) reportée pour les ions Sn⁴⁺ au sein de l'oxyde Fe₂O₃ α isotype de la phase rhomboèdrique V_2O_3 . Une très faible dépendance thermique de $f_{sn^{4+}}$ a été également signalée pour l'étain tétravalent dans les sites octaédriques de divers composés oxygénés tels que BaSnO₃, $CaSnO_3$, $SrSnO_3(10)$, ou $SnO_2(8)$. La variation de $f_{Sn^{4+}}$ dans le cas de V₂O₃ rhomboédrique semble ainsi traduire un phénomène commun aux matrices oxygénées mentionnées. D'après les travaux de Kagan (11), la faible dépendance thermique de f peut être attribuée au rôle prépondérant du mode vibrationnel optique à phonons de haute énergie et par conséquent difficilement excitables lors del'absorption du rayonnement γ résonnant.

Selon les résultats de ces mêmes travaux théoriques (11), la diminution de la contribution du mode optique au spectre de vibrations d'une impureté lourde (Sn⁴⁺) dans un réseau comportant plusieurs types d'atomes serait alors corrélée à l'affaiblissement des interactions entre les atomes métalliques de masse plus élevée (V^{3+}) . Une part accrue du mode acoustique, qui résulte de cet affaiblissement, traduirait alors une dépendance thermique de f plus accentuée. Une telle interprétation est compatible avec les résultats de l'étude radiocristallographique de V_2O_3 qui ont mis en évidence une brusque augmentation de la distance interatomique pour certains ions V³⁺ lors de la transformation structurale: phase rhomboédrique \rightarrow phase

FIG. 3. Variation de la valeur normalisée du champ hyperfin H(T)/H(0) en fonction de T/T_N pour les ions ¹¹⁹Sn⁴⁺ dans le volume de V₂O₃. Les valeurs utilisées de H(0) = 75,8 kOe et de $T_N = 200$ K sont respectivement le champ hyperfin calculé à partir du spectre de ¹¹⁹Sn mesuré à 4,2 K et la température de Néel déterminée antérieurement à partir des spectres Mössbauer des ions ⁵⁷Fe³⁺ (12). La courbe en pointillé correspond à la fonction de Brillouin pour S = 1 (V³⁺: 3d²).

monoclinique (4). L'origine du comportement dynamique anormal observé par les ions Sn^{4+} reste toutefois à préciser.

Les résultats de cette étude permettent de caractériser les phénomènes magnétiques liés à la transformation structurale observée pour V_2O_3 . Ainsi, la variation thermique du champ magnétique transféré H(T) pour ¹¹⁹Sn⁴⁺ montre qu'entre 155 et 170 K ce champ devient brusquement égal à 0 tandis qu'aux températures inférieures à 155 K son évolution est relativement lente (Fig. 3). Un tel comportement anormal de H, qui est analogue à celui signalé auparavant pour les ions ⁵⁷Fe³⁺ également introduits dans le volume de V_2O_3 (11), suggère que la température de Néel (fictive) de la phase monoclinique de cet oxyde devrait être nettement supérieure à celle de transformation structurale. La valeur de $T_{\rm N} \simeq 200~{\rm K}$ déterminée par extrapolation à partir des spectres Mössbauer de ⁵⁷Fe³⁺ (12) est compatible avec la variation de H observée pour les ions ¹¹⁹Sn⁴⁺, pourtant très différents (en particulier, Sn⁴⁺ est diamagnétique tandis que Fe³⁺ est paramagnétique). On peut en conclure que $T_N \simeq 200$ K constitue une caractéristique intrinsèque de la phase monoclinique. La non coïncidence très marquée entre les valeurs de T_N et T_1 confirmée par les spectres de ¹¹⁹Sn⁴⁺ souligne donc le fait que les interactions responsables de l'état magnétiquement ordonné de V₂O₃ ne puissent être la cause principale de la transformation structurale dans cet oxyde.

Dans le cas des ions superficiels Sn^{2+} , la transformation structurale est également observée à une température comprise entre 155 et 170 K. La disparition de la phase monoclinique magnétiquement ordonnée se manifeste pour ces ions par l'affinement drastique des composantes du doublet magnétiquement élargi ($\Gamma \approx 1,6 \text{ mm/s}$) qui devient purement quadrupolaire pour la phase rhomboédrique ($\Gamma \approx 1,0 \text{ mm/s}$). Or cette transformation n'a pas été décelée dans l'oxyde de vanadium non stoechiométrique correspondant à la formule V₂O_{3,06} (13).

Dans l'hypothèse où les ions V⁴⁺ inhibaient la transformation structurale dans l'oxyde de vanadium non stoechiométrique, ceux-ci ne devraient donc pas être présents dans la couche superficielle qui subit cette transition dans l'échantillon étudié de V₂O₃ d'après les spectres de ¹¹⁹Sn²⁺. En effet, une étude par méthode ESCA d'un échantillon de V₂O₃: 0,5% Sn préparé dans les mêmes conditions expérimentales a montré un enrichissement en étain très important de la surface des particules ([Sn] = 7% at. dans la couche de 20 Å d'épaisseur) (2). Si la compensation de charge due à la présence d'ions Sn^{2+} était assurée par les ions V^{4+} ces derniers auraient dus être présents en quantité équivalente à celle des ions Sn²⁺ et donc supprimer l'apparition de la phase monoclinique. Ainsi, les résultats obtenus, qui semblent exclure un tel mécanisme, suggèrent plutôt que les ions Sn^{2+} participeraient à la surface des cristallites de V_2O_3 préférentiellement sous forme d'espèces neutres (de type SnO) sans provoquer la rupture des liaisons $V^{3+}-V^{3+}$.

Les spectres Mössbauer ayant montré que dans les échantillons traités différemment le rapport Sn²⁺/Sn⁴⁺, pouvait varier en assez larges proportions sans affecter d'une façon notable les paramètres du sextuplet hyperfin des ions ¹¹⁹Sn⁴⁺, le mécanisme basé sur la compensation réciproque des charges de Sn⁴⁺ et Sn²⁺ paraît peu vraisemblable et par ailleurs difficilement compatible avec la répartition particulière de ces ions au sein de l'oxyde étudié. La compensation indépendante de l'excès de charge dû aux ions Sn4+ pourrait donc consister en la formation d'une quantité équivalente d'ions V^{2+} dans le volume des particules. Cette hypothèse est compatible avec l'élargissement important des composantes du sextuplet de ¹¹⁹Sn⁴⁺ observé à 4,2 K $(\Gamma_{4,2 \text{ K}}/\Gamma_{60 \text{ K}} \simeq 1,5)$, effet qui suggère l'apparition d'une distribution de champs magnétiques transférés et donc des environnements cationiques non équivalents autour des ions ¹¹⁹Sn⁴⁺. La diffusion atomique dans ce domaine de température ne pouvant jouer qu'un rôle très limité, cet effet refléterait l'existence, aux températures plus élevées, d'un processus de type "hopping" électronique entre les ions V^{2+} et V^{3+} et la formation, d'associations d'ions $Sn^{4+}-V^{2+}$ par piégeage à très basse température d'un électron à proximité de Sn⁴⁺.

IV. Conclusions

Le comportement dynamique des ions Sn^{2+} localisés à la surface des particules de V_2O_3 traduit essentiellement la coordinence réduite de ces ions comportant un doublet non engagé et ne semble pas être affecté par leur position à la surface de cet oxyde. Par ailleurs, la transformation structurale de V_2O_3 est pratiquement sans effet sur les amplitudes de vibrations thermiques des ions

 Sn^{2+} ; elle n'est décelée pour ceux-ci qu'au travers de la disparition de la perturbation magnétique dans leur spectre à $T > T_t$.

La variation du facteur Lamb-Mössbauer en fonction de la température pour les ions Sn^{4+} localisés dans le volume des particules subit, en revanche, un changement radical à T_t qui peut refléter le rôle accru du mode acoustique dans les vibrations des ions Sn^{4+} au sein de la phase monoclinique magnétiquement ordonnée.

La température de Néel (fictive) déterminée à partir des spectres Mössbauer de ¹¹⁹Sn⁴⁺ ($T_N \approx 200$ K) peut être considérée comme une caractéristique intrinsèque de la phase monoclinique.

Le mécanisme de compensation de charge associé au dopage de V_2O_3 avec de l'étain semble être indépendant pour les ions Sn^{2+} et Sn^{4+} .

Bibliographie

- P. B. FABRITCHNYI, A. N. PROTSKY, V. P. GORKOV, T. M. DUC, G. DEMAZEAU, ET P. HAGENMULLER, Sov. Phys. JETP Engl. Transl. 54, 608 (1981).
- P. B. FABRITCHNYI, M. I. AFANASOV, A. A. SHVYRIAEV, G. DEMAZEAU ET I. A. PRESNIAKOV, Solid State Commun. 74, 337 (1990).
- 3. E. P. WAREKOIS, J. Appl. Phys. 31, 346S (1960).
- 4. P. D. DERNIER ET M. MAREZIO, *Phys. Rev. B* 2, 3771 (1970).
- 5. R. M. MOON, J. Appl. Phys. 41, 883 (1970).
- 6. R. H. HERBER, Phys. Rev. B 27, 4013 (1983).
- A. J. F. BOYLE, D. S. P. BUNBURY, ET C. Edwards, Proc. Phys. Soc. A 79, 416 (1962).
- G. S. Collins, T. Kachnowski, N. Benczer-Koller, et M. Pasternak, *Phys. Rev. B* 19, 1369 (1979).
- 9. E. REALO ET A. LIYN, *en* "Proceedings of 5th International Conference on Mössbauer Spectroscopy, Prague, 1975," p. 151.
- F. Z. HIEN, V. S. SHPINEL, A. S. VISKOV, ET Y. N. VENEVTSEV, *Zh. Eksp. Teor. Fiz.* 44, 1889 (1963).
- 11. Y. KAGAN, Zh. Eksp. Teor. Fiz. 41, 659 (1961).
- 12. T. SHINJO ET K. KOSUGE, J. Phys. Soc. Jpn. 21, 2622 (1966).
- M. NAKAHIRA, S. HORIUCHI, ET H. OOSHIMA, J. Appl. Phys. 41, 836 (1970).